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Abstract 

Although waterflooding is an effective process, surfactant flooding is used to 

recover oil from reservoirs by wettability alteration and interfacial tension 

reduction. Economical effectiveness is a main challenge in feasibility of any EOR 

method. In this study, we investigate the economical efficiency of both surfactant 

and water flooding by algorithm genetic optimization. One of the important 

optimization variables is well placement. Various methods have been suggested for 

this problem. Among these, direct optimization, although accurate, is impossible 

due to the number of simulation required.   

Optimal placement of up to three injection wells was studied at two fields. One of 

the Iranian conventional field and a hypothetic fractured field. Injection rate and 

injection time was also optimized. The net present value of the surfactant flooding 

projects was used as the objective function. Profits and costs during the time period 

of the project were taken into consideration. 



1. Introduction 

 

Enhanced oil recovery (EOR) is oil recovery by injecting materials that are not 

present in a petroleum reservoir. One of the important methods in EOR is chemical 

flooding such as surfactant flooding. Injection of surfactant increases the oil 

recovery [1]. Chemical flooding in the petroleum industry has a larger scale of oil 

recovery efficiency than water flooding. On the other hand, it is far more technical, 

costly and risky. Surfactant flooding is used to recover oil from reservoirs by 

wettability alteration and interfacial tension reduction. Surfactants have been 

identified which can lower the IFT between oil and aqueous phase. The reduction 

of IFT leads to mobilization of the oil by buoyancy forces. In all the enhanced oil 

recovery processes, flow of displacing and displaced fluid in a petroleum reservoir 

is affected by the wettability of the reservoir rock [2]. 

Surfactant flooding process has to be optimized. One of the important optimization 

variables is well placement. Determining of the location of new wells is a 

complicated problem which depends on reservoir and fluid properties [3]. Various 

methods have been suggested for this problem. Among these, direct optimization, 

although accurate, is impossible due to the number of simulation required.   

The optimization algorithm used in this work is the genetic algorithm. The main 

characteristic of GA is the ability to work in a solution space with non-smooth and 

non-linear topology where the traditional methods generally fail. A reservoir 

simulator has been used in the present study. Genetic algorithm depends on the 

principle of artificial intelligence similar to Darwin’s theory of natural selection. 

The genetic algorithm is coupled with the simulator in order to re-evaluate the 

optimized wells at each iteration [4]. 

The well location is one of the most important aspects in production definition. 

Reservoir performance is highly dependent on well locations [5]. The process of 

choosing the best location for wells is basically trial and error. It is a time-

consuming and demands high computational efforts, since the productivity 

depends on many variable related to well characteristics, reservoir and fluid 

properties, which can only be understood through numerical simulation. The use of 

an optimization algorithm to find a good position for the wells can be very useful 



to the process but it can also lead to an exhaustive search, demanding a great 

number of simulations to test many possibilities, most of the them disposable [6]. 

Numerical models are detailed and powerful predictive tools in reservoir 

management. While not perfect they are often the best representation of the 

subsurface. Optimization method run these numerical models perhaps thousands of 

times reaching for the most profitable solution to reservoir management questions. 

Because of the computational time involved optimization methodologies are not 

used as much as they could be. Various researchers have explored speeding up 

optimization by either using a speedier evaluation of the objective function or 

improving the efficiency of the optimization search itself. 

The current study has been done according to a contract between the department 

petroleum engineering/ university of Sharif and Iranian Oil Company  

 

2. Background  

Optimum reservoir management is an important theme in petroleum industry. Most 

of the studies related to reservoir performance optimization focus the well 

placement. 

Aanonsen et al [7] proposed a method to optimize well locations under geological 

uncertainties based on response surfaces and experimental design. Multiple 

regression and kriging were used to reduce the number of simulation runs. A 

methodology to optimize the number and location of producer well in new fields 

was developed by Pedroso and Schiozer [8]. It was applied in primary recovery 

stage developed with vertical wells. The work utilizes parallel computing with 

intention to accelerate the process. Mezzeomo and Schiozer [9] proposed an 

optimization procedure based on reservoir simulation that evaluate both individual 

and wells and field performance. The methodology helps managers to make 

decisions that lead to an adequate recovery for the reservoirs, maximizing profits 

and minimizing risks associated to the investments. 

The process to choose the location and the number of wells is not a simple 

procedure because of number of variables involved. The well behavior depends on 

the reservoir properties and interaction with other wells and it can only be 



predicted through numerical simulation. Therefore, each combination of number 

and well position must be tested by engineers. Many studies propose the use of an 

optimization algorithm to reduce the engineer’s effort. The genetic algorithm has 

been used world-wide for this purpose due to its ability to work in a solution space 

with non-smooth and non-linear topology, where the traditional methods generally 

fail. The GA is an optimization method based on natural evolution process. It 

operates by defining an initial population with N individuals. Each individual is 

evaluated according to the value of the fitness function. Three main types of rules 

are used to drive the process: selection (or reproduction), crossover and mutation. 

Selection consists of determining a set of elite individuals from the population, 

based on fitness to the objective function: individuals with best objective function 

are candidates for elite. Crossover is the operation that tries to retain good features 

from the previous generation. It enables the algorithm to extract the best genes 

from different individuals and recombine them into potentially superior children. 

Mutation is the operation responsible to add diversity in a new generation. 

Bittencourt and Horne [10] developed a hybrid algorithm based on direct methods 

such as genetic algorithm, polytope search and tabu search to obtain the optimal 

solution for problems related to reservoir development. Simulator was used as a 

data generator for the evaluation of the objective function, which involved an 

analysis of cash flow. Guyaguler et al [11, 12] have also been used genetic 

algorithm to reduce computational burden in well placement optimization problem 

upon uncertainties. Application of genetic algorithm and simulated annealing are 

presented by yang et al [13] to optimize production-injection operation systems. 

Ozdogan et al [14] also applied hybrid genetic algorithm for optimization of well 

placement under time-dependent uncertainty. 

 

3. Surfactant-flooding   

Surfactants are polar compounds, consisting of an Amphiphilic molecule with both 

hydrophilic and hydrophobic parts. The surfactants are classified as: anionic, 

cationic, Amphoteric and nonionic depending upon the nature of the charge present 

on hydrophilic group. The two basic features of the surfactants that make them 

unique for use in oil industry are their ability to lower oil-water interfacial tension 



and alter the reservoir wettability. Surfactant functions work by adding certain 

concentrations of surfactants to injection water to reduce the interfacial tension 

(IFT) between displacing and displaced phases [15]. In the process of surfactant 

flooding, the surfactant adsorbs onto the oil-water interface and surface of rock 

which may also make a wettability change of rock [16]. The experiment shows that 

the oil drops are becoming easier to deform when the water-oil interfacial tension 

reduces, so the resistance force lowers when the oil drops flow through the pore 

throat. With the decrease of IFT, the crude oil can disperse in the surfactant 

solution, meantime, the surface of oil drops are charged after adsorption, so the oil 

drops are not easy to stick onto the surface of rock particles.  

The objective of this study is the simulation and optimization of surfactant 

flooding at two different reservoirs; conventional and fractured reservoirs. The 

schematic of the conventional and fractured reservoir is presented in Fig.1 and 

Fig.2 respectively.  

 

Fig.1 The schematic of the conventional oil reservoir 



 

Fig.2 The schematic of the fractured oil reservoir 

As shown in the figures 1&2, each reservoir consists of eight production wells. The 

Iranian conventional oil reservoir is located at ILAM formation. The name of the 

wells is based on the formation name. The fractured reservoir is a hypothetic one. 

In the first step, two new injection wells were located at each reservoir. The 

location of injection wells is shown at Fig. 3 and Fig. 4 respectively. The color bar 

shows the oil saturation at the reservoir. 

 

 



 

Fig. 3 the schematic of Iranian conventional oil reservoir 

 

The fig. 4 the schematic of fractured oil reservoir 



Then the surfactant flooding and waterflooding processes were simulated at both 

reservoirs at three injection rates. Finally the cumulative oil production respect to 

the natural production for both reservoirs was compared. The comparison between 

the plots of both reservoirs is shown at Fig. 5 to Fig. 19. The Oil recovery (%) for 

conventional reservoir and three injection rates and three cases (waterflooding and 

surfactant flooding and natural flooding) has shown at Table 1 and table 2.  

 

Fig 5 conventional reservoir at injection# 1 at 500 STB/day 

 

Fig 6 conventional reservoir at injection# 1 at 1000 STB/day 
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Fig 7 conventional reservoir at injection# 1 at 2000 STB/day 

 

Fig 8 conventional reservoir at injection# 2 at 500 STB/day 
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Fig 9 conventional reservoir at injection# 2 at 1000 STB/day 

 

Fig 10 conventional reservoir at injection# 2 at 2000 STB/day 
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Table 1. Oil recovery at conventional reservoir at injection# 1 

State Oil Recovery (%) 

Natural flooding 11.21 

Waterflooding  at 500 STB/day 11.251 

Surfactant flooding  at 500 STB/day 11.825 

Waterflooding at 1000 STB/day 11.657 

Surfactant flooding  at 1000 STB/day 12.043 

Waterflooding  at 2000 STB/day 11.977 

Surfactant flooding at 2000 STB/day 12.48 

 

Table 2. Oil Recovery at conventional reservoir at injection# 2 

State Oil Recovery (%) 

Natural flooding 11.21 

Waterflooding  at 500 STB/day 11.562 

Surfactant flooding  at 500 STB/day 11.969 

Waterflooding at 1000 STB/day 11.869 

Surfactant flooding  at 1000 STB/day 12.313 

Waterflooding  at 2000 STB/day 12.354 

Surfactant flooding at 2000 STB/day 12.817 
 

First, we placed the injection# 1 well and did all simulations. As it can be seen, by 

increasing the injection rate, the waterflooding and surfactant flooding oil 

recoveries has increased respect to natural flooding state. Second, without presence 

of the injection# 1, we placed the injection# 2 well and repeated all steps. The 

results of this case are similar to the previous case. As it can be seen, the surfactant 

flooding oil recovery is greater than the waterflooding oil recovery with the same 

injection rate. The surfactant flooding oil recovery for injection# 2 is greater than 

the injection# 1 case. So we can conclude that the surfactant flooding is strongly 

dependent to the well location and injection rate. Another point is that these results 

are for a limited time of simulation. And ultimate oil recovery for waterflooding is 

about 30 to 40 % greater than the natural state and surfactant flooding ultimate 

recovery is approximately 10 to 15 % greater than waterflooding state. By doing 

this, we just wanted to show that surfactant flooding is an efficient method. 

 

Both un-fractured and fractured formations will be addressed in this study. The 

driving force for displacement of oil in un-fractured systems is primitively the 

pressure gradient developed by displacing fluids from the injection well to the 



production well. This pressure gradient may be only a small contributor in 

fractured formations. In this case, spontaneous imbibition includes capillary 

pressure gradients and buoyancy, or gravity drainage. The contribution due to 

capillary pressure gradient may be diminished because of low interfacial tension.  

In a fractured reservoir, fluids exist in two interconnected systems: 

1- The rock matrix, which usually provides the bulk of the reservoir volume 

2- The highly permeable rock fractures 

Wettability and matrix block size are two major factors in fluid transfer between 

fracture and matrix. For an oil-wet fractured reservoir, containing only oil and 

water, water from an injection well or from an aquifer can flow in fractures easily 

and much faster than in the matrix. Gravity drainage can produce oil if the matrix 

block is thick enough to overcome the negative water-oil capillary pressure. This is 

true particularly for oil-wet fractured reservoirs [17].   

If the matrix blocks are linked only through the fracture system, this 

conventionally could be regarded as a dual porosity single permeability, since fluid 

flow through the reservoir take place only in the fracture network with the matrix 

block acting as sources. If there is the possibility of flow directly between 

neighboring matrix blocks, there is conventionally considered to be a dual porosity 

dual permeability systems. So we did simulations for dual porosity and dual 

permeability cases. Results of dual permeability cases are shown at Fig 11 to Fig 

16. The oil Recoveries (%) has shown at Table 3 and Table 4.     



                  

                              Fig 11 Dual Permeability reservoir at injection# 1 at 500 STB/day 

 

Fig 12 Dual permeability reservoir at injection# 1 at 1000 STB/day 
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Fig 13 Dual permeability reservoir at injection# 1 at 2000 STB/day 

 

Fig 14 Dual permeability reservoir at injection# 2 at 500 STB/day 
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Fig 15 Dual permeability reservoir at injection# 2 at 1000 STB/day 

 

Fig 16 Dual permeability reservoir at injection# 2 at 2000 STB/day 
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Table 3. Oil recovery at Dual permeability reservoir at injection# 1 

State Oil Recovery (%) 

Natural flooding 10.348 

Waterflooding  at 500 STB/day 12.246 

Surfactant flooding  at 500 STB/day 12.643 

Waterflooding at 1000 STB/day 12.426 

Surfactant flooding  at 1000 STB/day 12.68 

Waterflooding  at 2000 STB/day 17.144 

Surfactant flooding at 2000 STB/day 17.973 

 

Table 4. Oil Recovery at Dual permeability reservoir at injection# 2 

State Oil Recovery (%) 

Natural flooding 10.348 

Waterflooding  at 500 STB/day 10.732 

Surfactant flooding  at 500 STB/day 11.893 

Waterflooding at 1000 STB/day 12.399 

Surfactant flooding  at 1000 STB/day 13.14 

Waterflooding  at 2000 STB/day 12.673 

Surfactant flooding at 2000 STB/day 14.172 

 

At First, we placed the injection# 1 well and did all simulations. As it can be seen, 

by increasing the injection rate, the waterflooding and surfactant flooding oil 

recoveries has increased respect to natural flooding state. Secondly, without 

presence the injection# 1, we placed the injection# 2 well and repeated all steps. 

The results of this case are similar to the previous case. As it can be seen, the 

surfactant flooding oil recovery is greater than the waterflooding oil recovery with 

the same injection rate. The surfactant flooding oil recovery for injection# 1 case is 

different from the recovery of injection# 2. So we can conclude that the surfactant 

flooding is strongly dependent to the well location and injection rate. Another point 

is that these results are for a limited time of simulation, so ultimate oil recovery for 

waterflooding and surfactant flooding are greater than such values. By doing this, 

we just wanted to show that surfactant flooding is an efficient method and dual- 

permeability reservoirs behave similar to conventional reservoirs. One reason is 

that in such reservoirs, fluid flow through the reservoir not only in the fracture 

network and there is the possibility of flow directly between neighboring matrix 

blocks. 



Finally we did simulation for dual porosity reservoirs. Results of dual porosity case 

are shown in Fig. 17 to Fig. 19. The oil Recoveries (%) has shown at Table 5.    

 

Fig 17 Dual porosity reservoir at injection# 1 at 500 STB/day 

 

Fig 18 Dual porosity reservoir at injection# 1 at 1000 STB/day 
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Fig 19 Dual porosity reservoir at injection# 1 at 2000 STB/day 

 

 

 

Table 5. Oil recovery at Dual porosity reservoir at injection# 1 

State Oil Recovery (%) 

Natural flooding 14.055 

Waterflooding  at 500 STB/day 14.93 

Surfactant flooding  at 500 STB/day 14.93 

Waterflooding at 1000 STB/day 16.14 

Surfactant flooding  at 1000 STB/day 16.14 

Waterflooding  at 2000 STB/day 16.88 

Surfactant flooding at 2000 STB/day 16.88 

 

As it can be seen, the surfactant flooding process is not an efficient process respect 

to waterflooding process in dual-porosity reservoirs since the oil recovery of 

surfactant flooding is the same as the water flooding oil recovery. One reason is 

that the matrix blocks are linked only through the fracture system and fluid flow 

through the reservoir takes place only in the fracture network with the matrix block 

acting as sources and matrix networks are not interconnected and surfactant is not 

in direct contact to matrix network. In dual-porosity reservoirs, if we place an 

injection well near the production wells (like injection# 2), the water and surfactant 

flow through the fractures and early breakthrough occurs and water flooding and 
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surfactant flooding recoveries maybe smaller than natural flooding. Surfactant has 

to be in direct contact to matrix to mobilize the oil by wettability alteration and IFT 

reduction mechanism. So we conclude that the surfactant flooding is inefficient 

process in dual porosity reservoirs and the behavior of these reservoirs is unlike to 

the dual permeability reservoirs.    

Surfactant injection method in an oil-wet, dual-porosity model may not be 

effective because of the following reasons [17]: 

1- Pressure gradient may be too small to displace oil from the matrix in 

fractured formations in contrast to the homogenous un-fractured reservoirs. 

2- High permeable fractures could act like thief zones and bypass small 

fractures. In this case using mobility control agents like foam might be 

considered 

3- Gravity difference between fracture and matrix could be ineffective to 

mobilize oil by chemical flooding depending on the matrix block height. The 

smaller block height, the less the effectiveness of gravity drainage.   

 

4. Genetic algorithms 

Genetic algorithms are search algorithms based on the mechanics of natural 

selection. They combine survival of fittest with a structured yet stochastic 

exchange of information of increase the efficiency of an otherwise purely random 

search. These methods were first used in the sixties by biologists to simulate 

evolution, based mainly on mutation patterns. The first attempt to use Genetic 

algorithms to optimize complex problems was in the seventies by john Holland in 

which the basic theory was formulated demonstrating the ability of bit chains to 

represent complex problems, and the capacity of simple transformation to improve 

those chains. In this work Holland [18], demonstrated that it was possible to find 

an optimal individual evaluating only a very small fraction of the population. 

It is useful to comment on the main differences between genetic algorithms and 

traditional methods: 

1. Direst manipulation of a coding  

2. Search from a population and not from a point 



3. Search via sampling, blind search 

4. Search using stochastic operators 

All these differences make genetic algorithm able to overcome many of the 

limitations of the traditional methods, especially the continuity and derivability of 

the objective function. 

4.1. Genetic algorithms structure  

In the following lines, the different processes that make up a genetic algorithm and 

their variations are analyzed in detail. The figure 7 shows a flowchart of the GA 

used in this work. 

 

 

                Fig 7. Flowchart of optimization with genetic algorithm 

 



Population generation  

This is the first step. Here the problem variables are codified to form a 

chromosome, and an initial population is generated, either randomly or using 

algorithms which assure an appropriate coverage of the population. Alternatively 

part of the initial population can be introduced manually if the programmer has an 

interpretation of where the optimum might be. 

The chromosomes are made of bytes, each byte representing one of the codified 

problem variables. Each variable is codified usually in binary code, or grade, 

although in the program developed the codification has been decimal, to simplify 

the algorithm, although this has further implications which will be discussed later 

in detail. 

4.2. Evaluation 

In the evaluation step all the chromosomes are evaluated. This evaluation can be as 

complex as desired, and can incorporate technical and economical functions. This 

evaluation ranks all the chromosomes from the best to worst. In biological terms, 

this represent the fitness of every chromosome to survival and reproduction. When 

using complex evaluations with penalizing restrictions, it is important not to use 

very strong penalties as it can restrict the evolution of the population. A biological 

paradoxical analogue is illustrative, ’’ if it is impossible to fly with heavy loads, 

and in order develop wings the weight has to be increased, then no animal would 

ever fly’’. 

4.3. Reproduction  

This is probably the most complicated step, and the one with the highest number of 

variations. In this step the new generation of chromosomes is created from the 

parent chromosomes. The mating and survival of the chromosomes is based upon 

their evaluation. There are different methods to create new populations. Those in 

which the selection of the parents is merely deterministic (Ranking methods), 

being the chromosomes selected to mate based only on their merit. Those in which 

the selection is random (heuristic selection), so that the fittest chromosomes have 

the highest chance of being reproduced. Finally mixed techniques like tournament, 



are those where all the chromosomes are mated in pairs and only the ones with the 

highest merit survive. 

Once the parent chromosomes have been chosen, a new generation has to be 

created from them. These processes are used: mating (crossover), mutation and 

elitism. In elitism a few of parent chromosomes are passed intact to the new 

generation. In mating, two chromosomes are crossed and the children chromosome 

is created by a combination of the parents code. The last method in mutation, in 

which a part of the parent code is randomly changed. 

The mix of these three mechanisms is complex and various authors have studied 

their influence in obtaining the absolute maximum and the convergence speed, 

regarding the problem to be optimized (Udias [19], Bittencourt [20]). In the 

program developed for this dissertation the influence of these processes can be 

controlled and the effects of changing these parameters have been studied. 

4.4. Elitism    

Elitism is mainly used to make sure that the best chromosomes would survive to 

the next generation. In this way we will be assured that every new generation 

would be at least as good as the previous ones. However if a great part of the 

population is protected in this way, The creation of new chromosomes is slowed 

and thus, it can affect global convergence, if the chromosomes protected represent 

a local maximum. 

4.5. Mating 

Mating is the main mechanism by which new chromosomes are created and is 

highly advised that most of the chromosomes will be allowed to cross. In mating 

two parents chromosomes are selected, and a random point in their strings is 

selected. This point is used to break the parent chromosomes and their parts are 

mixed creating two new chromosomes. 

4.6. Mutation   

Mutation is basically a mechanism to assure that new genetic material is 

introduced. It is recommended that at least a small degree of mutation is allowed so 

that in case of stagnation (local maximum) the process can move to other 



maximums. The mutation process can move to other maximums. The mutation 

process can be applied either prior to mating or after mating. Another possibility is 

to mate only part of the population, and mutate the rest. 

5. Results and discussion 

5.1 Simulation study 

The objective of this study is optimization of surfactant flooding at two 

different reservoirs. The genetic algorithm is the selected optimization 

method for this study. We coupled reservoir simulation software with 

genetic algorithm for optimization. While the cost of the drilling is so high 

and drilling process is time-consuming, in this study, the strategy was to use 

the available wells without drilling any new well for injection to eliminate 

the cost of drilling new wells. Therefore, it was assumed that up to three 

production wells of each reservoir can be changed to injection wells. 

Therefore by an appropriate optimization process, we are able to choose the 

best wells that are candidates for the surfactant flooding and water flooding. 

Also the injection rate of wells and the injection time should be optimized in 

order to maximize the production income. The parameters that are selected 

as optimization variables are given in table 1. 

 
 

 

Table 1  The range and number of bits of optimization variables in genetic chromosome 

Parameters Number of bits Ranges 

Well number 3 1-8 

Injection rate 2 100-400 

Injection time 2 1000-3000 

 

5.2 The fitness function 

In any optimization problem, there is an objective function which should be 

maximized or minimized. Genetic algorithm requires a fitness function (𝐹(𝑥)) to 

be defined and tries to Maximized this function. A fitness function is a particularly 

objective function that quantifies the optimality of a solution (chromosome) in a 

genetic algorithm so that the particular chromosome maybe ranked against all other 

chromosomes. The net present value is defined as the fitness function. The net 



present value is defined as the revenue from produced oil, after subtracting the cost 

of disposing produced water and the cost of injection water. During the 

optimization, objective function is defined as the Maximizing of Net Present 

Value. 

𝑁𝑒𝑡 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤(𝑡) = 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑡) −  𝑂𝑝𝑒𝑥(𝑡) 

𝑅𝑒𝑣𝑒𝑛𝑢𝑒 (𝑡) = 𝑂𝑖𝑙 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑡) × 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒 (𝑡) 

𝑂𝑃𝐸𝑋(𝑡) = 𝑊𝑎𝑡𝑒𝑟 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (𝑡) × 𝑊𝑎𝑡𝑒𝑟 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡

+ 𝑊𝑎𝑡𝑒𝑟 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 (𝑡) × 𝑊𝐴𝑡𝑒𝑟 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡

+  𝑠𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛𝑛(𝑡) × 𝑠𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡 ℎ𝑎𝑛𝑑𝑙𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 

𝐶𝐴𝑃𝐸𝑋 = 𝑊𝑎𝑡𝑒𝑟 𝑖𝑛𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑖𝑛𝑠𝑡𝑎𝑙𝑙𝑚𝑒𝑛𝑡 𝑐𝑜𝑠𝑡 + 𝑠𝑢𝑟𝑓𝑎𝑐𝑡𝑎𝑛𝑡 𝑝𝑟𝑖𝑐𝑒 

𝑁𝑃𝑉 = 𝑁𝑒𝑡 𝑐𝑎𝑠ℎ 𝑓𝑙𝑜𝑤 − 𝐶𝐴𝑃𝐸𝑋 

For this study, NPV parameters were assigned as listed in table 2 [21]. 

Table 2. Economic parameters used to calculate the NPV 

Economic parameters Value 

Oil price, $/bbl 126 

Water production cost, $/bbl 32 

Water injection cost, $/bbl 6 

Surfactant price, $/lb 1.5 

Operating cost of surfactant, $/bbl 0.25 

Water injection installment cost, $ 10000000 

 

 

5.3 Optimization results 

In order to use genetic algorithm for optimization, setting up a number of 

parameters is required. The GA input parameters presented in table 3. 

 

 

 



 

Table 3.  GA input parameters 

Input parameters value 

Population size per generation 50 

Maximum number of generations 100 

Crossover rate 0.8 

Mutation probability 0.1 

Crossover type Single point 

 

 

The optimization of the six cases lasted approximately 1 day for each of 

them in a conventional PC to find the best values for surfactant flooding and 

water flooding process. The best values for conventional reservoir presented 

at Table 4 to Table 9. The NPV maximization versus generation plots are 

also shown at fig 8 to fig 10. 
 

Table 4. Optimal parameters for 1 injection well for the conventional reservoir by surfactant flooding 

Optimization variable Best value 

Well number 2 

Injection time 3000 𝑑𝑎𝑦 

Injection rate 400 𝑏𝑏𝑙/𝑑𝑎𝑦 

Best NPV 1.7819 × 1010 $ 

 

  

 

Table 5. Optimal parameters for 1 injection well for the conventional reservoir by water flooding 

Optimization variable Best value 

Well number 2 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.7528 × 10
10
$ 

 



 

Fig 8.  The NPV vs. generation plot for 1 injection well for the conventional reservoir 

 

Table 6. Optimal parameters for 2 injection wells for the conventional reservoir by surfactant flooding 

Optimization variable Best value 

Well number 2 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.7221 × 10
10 $ 

                     

            

Table 7. Optimal parameters for 2 injection wells for the conventional reservoir by water flooding 

Optimization variable Best value 

Well number 2 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.6928 × 10
10 $ 
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Fig 9.  The NPV vs. generation plot for 2 injection wells for the conventional reservoir 

 

              Table 8. Optimal parameters for 3 injection wells for the conventional reservoir by surfactant flooding 

Optimization variable Best value 

Well number 2 

Well number 3 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.6066 × 10
10
$ 

 

 

 

Table 9. Optimal parameters for 3 injection wells for the conventional reservoir by water flooding 

Optimization variable Best value 

Well number 2 

Well number 3 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.5792 × 10
10
$ 
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Fig 10.  The NPV vs. generation plot for 3 injection wells for the conventional reservoir 

In each case, the total time of simulation is 10000 𝑑𝑑𝑑  and it can be seen 

that surfactant flooding is an efficient method respect to the water flooding 

for all cases. At all of the cases, by increasing the injection time and 

injection rate, the NPV increases. So we can say that the more injection time 

the more economic efficiency. Another point is that the best wells are the 

middle ones. By looking at the reservoir schematic, we will understand that 

the best candidate wells for surfactant injection and water flooding processes 

are the wells located at the middle of the reservoir since in this case we can 

recover more oil and most part of the reservoir is drained. 

The best values for fractured reservoir obtained by optimization are 

presented in Table 10 to Table 15. The NPV versus generation plots of these 

cases are also shown in Fig. 11 to Fig. 13. 
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Table 10. Optimal parameters for 1 injection well for the fractured reservoir by surfactant flooding 

Optimization variable Best value 

Well number 2 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.3966 × 10
9
$ 

 

     Table 11. Optimal parameters for 1 injection well for the fractured reservoir by water flooding 

Optimization variable Best value 

Well number 2 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.3928 × 10
9
$ 

 

 

Fig 11.  The NPV vs. generation plot for 1 injection well for the fractured reservoir 
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                Table12. Optimal parameters for 2 injection wells for the fractured reservoir by surfactant flooding 

Optimization variable Best value 

Well number 1 

Well number 2 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.4617 × 10
9 $ 

 

Table13. Optimal parameters for 2 injection wells for the fractured reservoir by water flooding 

Optimization variable Best value 

Well number 1 

Well number 2 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.4543 × 10
9 $ 

 

 

Fig 12.  The NPV vs. generation plot for 2 injection wells for the fractured reservoir 
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Table 14. Optimal parameters for 3 injection wells for the fractured reservoir by surfactant flooding 

Optimization variable Best value 

Well number 1 

Well number 2 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.5608 × 10
9
$ 

  

           

 

 

 

 

Table 15. Optimal parameters for 3 injection wells for the fractured reservoir by water flooding 

Optimization variable Best value 

Well number 1 

Well number 2 

Well number 4 

Injection time 3000 𝑑𝑑𝑑 

Injection rate 400 𝑑𝑑𝑑/𝑑𝑑𝑑 

Best NPV 1.5516 × 10
9
$ 

 



 

Fig 13.  The NPV vs. generation plot for 3 injection wells for the fractured reservoir 

 

The results is similar to the conventional reservoirs. So the more injection time the 

more economic efficiency. But in this case, the best wells for injection are located 

at the side of the Reservoir because when we choose the middle wells for injection, 

the water cut increases and also the NPV decreases. So it can be concluded that for 

the surfactant flooding and water flooding projects, the location of injection wells 

are dependent to the reservoir characteristic.   

6. Conclusion 

In this study, we knew that the surfactant flooding process is an efficient one 

and is dependent to numerous variables. The variables that are under our control 

are location of the injection wells, injection rate and injection time. Also it was 

shown that the surfactant flooding is dependent to the type of reservoir and 

reservoir characteristics. From the optimization results it can be concluded that 

the best wells are located at the middle of the reservoir and increasing the 

injection rate and injection time also increase the net present value. Also we 

conclude that the surfactant flooding is efficient process in conventional and 

dual permeability reservoirs and in dual porosity reservoirs, such process is not 

effective. So before the chemical flooding like surfactant flooding, we must be 

familiar to type and characteristic of the reservoir 
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